CONSTRUCTION & DELIVERY METHODS

On the Cover:
The New Richmond City Justice Center Enhances Program Space in Virginia, see page 36

Precast Project Updates...20
Builders Roundtable...23

Delivery Methods...26
Facility of the Month...36
Forecasting Future Inmate Population

By Meg Bower

Correctional facilities are mission driven. Data is a relatively low priority, yet it is often data, and what it reveals, that forms the basis of correctional needs assessments. Projected Average Daily Population (ADP), in particular, is the foundation of every needs assessment.

Straight Line Forecasting of ADP

Historical ADP is often used to estimate future ADP by projecting the mathematical trajectory of historical ADP (10 years or so) into the future using a trend line or linear regression. This analysis can be done using standard desktop software and produces a convincing trend line; however, the forecast is rigid and yields a straight line forecast, either up or down.

Because it is reliant on historical patterns that remain steady, this strategy is effective over short time periods with little change. This type of forecast should not be used beyond five years, and is most accurate for the first six to 24 months out in a stable system.

The Inevitability of Change

Correctional facility practitioners operate within a constantly shifting array of policies that have the potential to alter admissions (ADM) and duration of stay (length of stay or LOS) — two key factors that determine bed-space needs. No projection methodology can perfectly anticipate every change, but it is customary to strive for a long-term projection that takes possible fluctuations in ADM and ALOS into account.

Some factors that can influence admissions or length of stay include:

- (ADM) Increased use of pre-trial alternatives such as treatment courts
- (ADM) Changes in the number of law enforcement officers on the street
- (ADM) Increased crime and arrests in a jurisdiction
- (ALOS) Changes in sentence lengths (through good time or other rewards)
- (ALOS) Changes in prosecutorial policy and/or sentencing policies
- (ALOS) Decriminalization of certain offenses (such as minor drug offenses)
- (ALOS) Policies that increase access to alternatives such as post-adjudication treatment options in lieu of incarceration

A projections method that allows adjustments for changes in ADM or ALOS is required.

Little’s Law

ADP in a correctional facility is based on the ADM combined with the duration of stay (LOS for individuals or ALOS for groups).

These three items fit together in a formula called Little’s Law, which describes the relationship between time and accumulation of items (people). It is used to calculate anything from how to minimize goods in inventory to how many baristas Starbucks needs at peak times.

Little’s Law in corrections is as follows: ADP = (ADM/T) * ALOS

Where all averages are calculated over the same duration (weekly, monthly, yearly) of time, represented by T days.

Historical Analysis

Little’s Law adapted to calculate historical ALOS (from ADM and ADP data) is as follows:

\[\text{ALOS} = \frac{\text{ADP} \times T}{\text{ADM}} \]

In a system where annual ADP = 260 (T = 365 days), and ADM (admissions) = 1,200, the ALOS per inmate is (260 * 260) / 1,200 = 6.2 days.

See M/O page 42

Paging, Talkback, & Audio Level Alarm

The industry leading DXL Digital Intercom System includes several product options to satisfy the paging requirements of virtually any facility. These include the PZE-110, which performs zone switching with an external amplifier, the TBE-310, which provides eight independent 5W/25V outputs, and the PTA-620, which is a VoIP device that provides a single 5W output.

PTA-620 VoIP Paging/Talkback Amplifier
- Provides single channel paging with talkback
- Built in Audio Level Alarm feature
- Can be powered from +24V or POE
- Options for SW/25V output or 5V into 8Ω
- Wall or DIN rail mounted

PZE-110 Page Zone Expander
- Used for system managed page zone selection
- Includes 3 banks of 6 relays c/w amplifier control
- Includes 16 supervised inputs
- 1U 19" Rack mount or Wall mount enclosure

TBE-310 Talkback Expander
- 8 independent 5W/25V outputs with talkback
- Built in Audio Level Alarm feature
- Groups of channels can be bridged to create higher power outputs
- 1U 19" Rackmount or Wallmount enclosure

To learn about the many features and benefits of a MICROCOMM Digital Intercom System please contact us:
1.888.792.1171
sales@harding.ca
www.harding.ca

Circle # 134 on reader service card.
Historical Fluctuation of ADM/ALOS and resulting ADP (Sample System)

<table>
<thead>
<tr>
<th>ALOS</th>
<th>1,900</th>
<th>2,000</th>
<th>2,350</th>
<th>2,600</th>
<th>3,000</th>
<th>3,250</th>
<th>3,600</th>
<th>3,850</th>
<th>4,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.0</td>
<td>104</td>
<td>119</td>
<td>129</td>
<td>142</td>
<td>154</td>
<td>164</td>
<td>170</td>
<td>180</td>
<td>192</td>
</tr>
<tr>
<td>24.0</td>
<td>125</td>
<td>132</td>
<td>151</td>
<td>171</td>
<td>187</td>
<td>197</td>
<td>204</td>
<td>212</td>
<td>224</td>
</tr>
<tr>
<td>28.0</td>
<td>146</td>
<td>153</td>
<td>180</td>
<td>199</td>
<td>204</td>
<td>213</td>
<td>223</td>
<td>234</td>
<td>242</td>
</tr>
<tr>
<td>32.0</td>
<td>167</td>
<td>175</td>
<td>206</td>
<td>226</td>
<td>242</td>
<td>250</td>
<td>272</td>
<td>298</td>
<td>307</td>
</tr>
<tr>
<td>36.0</td>
<td>187</td>
<td>197</td>
<td>232</td>
<td>256</td>
<td>276</td>
<td>286</td>
<td>306</td>
<td>335</td>
<td>350</td>
</tr>
<tr>
<td>40.0</td>
<td>208</td>
<td>219</td>
<td>258</td>
<td>285</td>
<td>309</td>
<td>329</td>
<td>349</td>
<td>373</td>
<td>384</td>
</tr>
<tr>
<td>44.0</td>
<td>229</td>
<td>241</td>
<td>283</td>
<td>313</td>
<td>342</td>
<td>361</td>
<td>384</td>
<td>410</td>
<td>422</td>
</tr>
<tr>
<td>48.0</td>
<td>250</td>
<td>263</td>
<td>309</td>
<td>342</td>
<td>375</td>
<td>399</td>
<td>426</td>
<td>453</td>
<td>471</td>
</tr>
<tr>
<td>52.0</td>
<td>271</td>
<td>285</td>
<td>335</td>
<td>370</td>
<td>410</td>
<td>442</td>
<td>474</td>
<td>504</td>
<td>534</td>
</tr>
<tr>
<td>56.0</td>
<td>292</td>
<td>307</td>
<td>361</td>
<td>399</td>
<td>440</td>
<td>473</td>
<td>507</td>
<td>537</td>
<td>575</td>
</tr>
<tr>
<td>60.0</td>
<td>312</td>
<td>329</td>
<td>386</td>
<td>427</td>
<td>463</td>
<td>496</td>
<td>530</td>
<td>569</td>
<td>616</td>
</tr>
<tr>
<td>64.0</td>
<td>333</td>
<td>351</td>
<td>412</td>
<td>456</td>
<td>500</td>
<td>544</td>
<td>588</td>
<td>641</td>
<td>688</td>
</tr>
<tr>
<td>68.0</td>
<td>354</td>
<td>373</td>
<td>438</td>
<td>484</td>
<td>531</td>
<td>578</td>
<td>633</td>
<td>692</td>
<td>751</td>
</tr>
<tr>
<td>72.0</td>
<td>375</td>
<td>395</td>
<td>464</td>
<td>513</td>
<td>562</td>
<td>612</td>
<td>671</td>
<td>730</td>
<td>791</td>
</tr>
<tr>
<td>76.0</td>
<td>396</td>
<td>416</td>
<td>489</td>
<td>541</td>
<td>593</td>
<td>645</td>
<td>708</td>
<td>769</td>
<td>833</td>
</tr>
<tr>
<td>80.0</td>
<td>416</td>
<td>438</td>
<td>515</td>
<td>570</td>
<td>625</td>
<td>681</td>
<td>745</td>
<td>810</td>
<td>877</td>
</tr>
<tr>
<td>84.0</td>
<td>437</td>
<td>460</td>
<td>541</td>
<td>596</td>
<td>652</td>
<td>713</td>
<td>782</td>
<td>852</td>
<td>921</td>
</tr>
<tr>
<td>88.0</td>
<td>458</td>
<td>482</td>
<td>567</td>
<td>627</td>
<td>683</td>
<td>747</td>
<td>820</td>
<td>892</td>
<td>964</td>
</tr>
<tr>
<td>92.0</td>
<td>479</td>
<td>504</td>
<td>592</td>
<td>655</td>
<td>721</td>
<td>781</td>
<td>857</td>
<td>932</td>
<td>1,008</td>
</tr>
<tr>
<td>96.0</td>
<td>500</td>
<td>526</td>
<td>618</td>
<td>684</td>
<td>750</td>
<td>815</td>
<td>894</td>
<td>966</td>
<td>1,052</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year</th>
<th>2000</th>
<th>2001</th>
<th>2002</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADM</td>
<td>260</td>
<td>287</td>
<td>304</td>
<td>310</td>
<td>310</td>
<td>310</td>
<td>310</td>
<td>310</td>
<td>310</td>
<td>310</td>
<td>310</td>
</tr>
</tbody>
</table>

Maintenance/Operations, from page 39

365 / 1,900 or 49.94 days.
ADM, ALOS and ADP can be placed in a matrix to illustrate changes in the system and to explore potential future scenarios. In this matrix, ALOS is represented in even intervals (four days, in this case) along the left axis and actual ADM is entered along the top. ADP is calculated and entered in the matrix using Little’s Law (ADP = ALOS / 365).
- ADM from a sample facility is highlighted in yellow.
- The capacity of the sample facility (200 beds from 2001 to 2005, 300 beds from 2006 to 2010) is blue.
- A pink band across ALOS 88 to 92 days is shaded to show how many beds would be required with the same admissions if ALOS doubled.

Historical ADM, ALOS & ALOS

These analyses of historical data are also possible using historical ALOS, ADM and ADM:
- Determine the ALOS of pre-trial defendants versus sentenced offenders in a jail.
- Calculate average pre-trial time to disposition for felons and misdemeanants to ensure compliance with time-to-trial standards.
- Determine increases or decreases in ALOS over time to help pinpoint periods of change in the system, which may inform on factors that affect ALOS.
- Quantify the impact of changes in the criminal justice system on admissions or ALOS and therefore ADP.
- Determine whether ALOS is collected to have a greater effect on ADP to help develop appropriate population reduction strategies.

These analyses offer insights into the pressures and changes in the system over time.

Forecasting Future ADP – Admissions First

Admissions-based forecasts produce versatile ADP models because they forecast admissions first and then apply ALOS to determine ADP. A number of statistical tests can be used to determine which mathematical formula best fits admissions data and complete the forecast. For non-statisticians, an outside planner or analyst can complete the analysis and admissions forecasting.

The admissions forecast should:
- Retroactively forecast one to three years of historical admissions to test the methodology.
- Include a range (confidence interval) typically +/-5 percent from the forecast line. If the confidence interval is narrow, the model had a better “fit” to the historical data.
- Limit itself to a projection that is not longer than the period of historical data (preferably 10 years).
- Emphasize accuracy over a range equal to less than half the period of historical data (usually three to five years, a reasonable capital facility-planning window).

Forecasted admissions can also be used to determine intake space needs, calculating:
- The number of average daily intake (used to determine holding/waiting areas, examination/interview rooms, etc.)
- Clothing inventory needs in intake versus warehouse storage
- Property storage
- Intake staffing and space requirements
- Facilities for outside law enforcement (for jails)
- Arraignment space and caseload (for jails with on-site court)

Estimating Future ADP

The basic ADP projection shows the status quo or the future with no system changes, which provides a benchmark against which new initiatives can be measured.

The following approaches are used to estimate ADP, then applied to the ADM forecast to produce ADP:

1. Examine historical ALOS data. Select one ALOS to apply over the whole duration based on recent history. For example, if the system is steady, use the average of the ALOS over the past three to five years.
2. Use an increasing or decreasing ALOS, based on the historical fluctuation in ALOS. (If ALOS increased one day per year over five years, assume a continued increase of one day per year.)
3. Establish a benchmark ALOS. For example, a goal of ALOS of 52 days might be reasonable.

The Assumption of Change

Once the status quo forecast is completed, possible alternate scenarios can be derived. Common alternate scenarios include:
- High and low status quo, based on confidence intervals for the admissions forecast
- Modified admissions scenarios (high or low), taking anticipated system changes into account
- Alternate ALOS scenarios, based on alternate assumptions

The various forecasts should each be considered carefully in order to select the best possible model to use for future planning.

Meg Bowers is a national criminal justice facility planner with 18 years of experience working with jails, courts and prison systems. She currently works at Dewberry.

Tech Watch, from page 34

of force incidents.
An interesting point to note is that some counties are funding the body cameras with inmate telephone revenue. Another county obtained PREA funding to purchase the cameras.

Correctional staff are used to scrutiny and being under the microscope. Unfortunately, public perception is often negative and focuses only on the exceptions to the good work most staff do on a daily basis. Video footage can show the strong but restrained and humane way that officers deal with violent inmates to subdue them and prevent loss of life.

Interestingly, in an article in the November/December 2014 edition, we cited a prominent forward-thinking leader in corrections who projected that, in the future, body cameras will be employed and will ultimately improve transparency, staff safety and accountability.